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6 Sampling and Reconstruction

6.1 Sampling

Definition 6.1. Sampling is the process of taking a (sufficient) number
of discrete values of points on a waveform that will define the shape of the
waveform.
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Figure 47: The Sampling Process

• In this class, the signal is sampled at a uniform rate, once every Ts
seconds.

m[n] = m(nTs) = m(t)|t=nTs.

• We refer to Ts as the sampling period, and to its reciprocal fs = 1/Ts
as the sampling rate which is measured in samples/sec [Sa/s].
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• At this stage, we assume “infinite” precision (no quantization) for each
value of m[n].

• The reverse process is called “reconstruction”.

6.2. Sampling = loss of information? If not, how can we recover the original
waveform back.

• The more samples you take, the more accurately you can define a wave-
form.

• Obviously, if the sampling rate is too low, you may experience distortion
(aliasing).

• The sampling theorem, to be discussed in the section, says that when
the waveform is band-limited, if the sampling rate is fast enough, we can
reconstruct the waveform back and hence there is no loss of information.

◦ This allows us to replace a continuous time signal by a discrete
sequence of numbers.

◦ Processing a continuous time signal is therefore equivalent to pro-
cessing a discrete sequence of numbers.

◦ In the field of communication, the transmission of a continuous
time message reduces to the transmission of a sequence of numbers.

Example 6.3. Mathematical functions are frequently displayed as contin-
uous curves, even though a finite number of discrete points was used to
construct the graphs. If these points, or samples, have sufficiently close
spacing, a smooth curve drawn through them allows us to interpolate in-
termediate values to any reasonable degree of accuracy. It can therefore be
said that the continuous curve is adequately described by the sample points
alone.

Example 6.4. Plot y = x2.
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Example 6.5. In Figure 48, we plot the function g(t) = sin(100πt) from
0 to 1 by connecting the values of the function at fifty uniformly-spaced
points.

Example: sin(100t) (1/4)
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Figure 48: Plot of the function g(t) =
sin(100πt) from 0 to 1 by connecting the val-
ues at fifty uniformly-spaced points.

Although the plot shows the correct shape of the sine wave, the perceived
frequency is just 1 Hz.

Theorem 6.6. Sampling Theorem: In order to (correctly and com-
pletely) represent an analog signal, the sampling frequency, fs, must be
at least twice the highest frequency component of the analog signal.

6.7. If the conditions of the sampling theorem are not satisfied, we expe-
rience an effect called aliasing in which different signals become indistin-
guishable (or aliases of one another) when sampled.

• The term “aliasing” also refers to the distortion or artifact that results
when the signal reconstructed from samples is different from the original
continuous signal.

Example 6.8. In Example 6.5, the frequency of the sine wave is 50 Hz.
Therefore, we need the sampling frequency to be at least 100.

6.9. For now, instead of trying to infer the “perceived” frequency by an-
alyzing the plot of the function in the time domain, it is easier to use our
plotspect function to visualize the location of the peaks (of the delta func-
tions) in the frequency domain.
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Example 6.10. Suppose the sampling frequency is 200 samples/sec. The
analog signal should not have the frequency higher than 100 Hz. This is
illustrated in Figure 49 in which cosine functions of different frequencies are
sampled with fs = 200.
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Figure 49: Our plotspect function can be used to visualize the “perceived” frequency of
a sampled signal.

6.11. Steps to find the “perceived” frequency of the sampled signal
when the sampling rate is fs:
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(a) For cos (2π(f0)t), we may use the “folding technique”:

(i) Consider the window of frequency from 0 to fs
2 .

(ii) Start from 0, increase the frequency to f0.
Fold back at 0 and fs

2 if necessary.

Remark: By the symmetry in the spectrum of cosine, we can always
give a nonnegative answer for the perceived frequency.

(b) For ej2π(f0)t, we use the “tunneling technique”:

(i) Consider the window of frequency from −fs
2 to fs

2 .

(ii) Start from 0.

i. If f0 > 0, increase the frequency to f0 (going to the right).
Restart at −fs

2 when fs
2 is reached.

ii. If f0 < 0, decrease the frequency to f0 (going to the left).
Restart at +fs

2 when −fs
2 is reached.

(c) We will study a more general analysis in Section 6.3.

Example 6.12. Find the perceived frequency of cos (300πt) when the sam-
pling rate is 200 [Sa/s].

Example 6.13. Find the perceived frequency of e300πt when the sampling
rate is 200 [Sa/s].
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Example 6.14. In each part below, for the given value of f0, find the
perceived frequency of cos (2πf0t) when the sampling rate is 88 [Sa/s].

ECS 332: In-Class Exercise # 19 - Sol 

Instructions 
1. Separate into groups of no more than three students each. The group cannot be the 

same as any of your former groups after the midterm. 
2. Write down all the steps that you have done to obtain your answers. You may not get 

full credit even when your answer is correct without showing how you get your answer. 
3. Do not panic.   

 
1. Suppose we input cos 2𝜋 𝑓 𝑡  into plotspect with sampling rate  88sf   samples/sec.  

Find the “perceived” frequency (the freq. that plotspect sees) when 

a) 0f  99 

 
b) 0f  2019 

 
2. Suppose we input 𝑒  into plotspect with sampling rate  88sf   samples/sec.  

Find the “perceived” frequency (the freq. that plotspect sees) when 

a) 0f  99 

 
b) 0f  2019 

 

0

88

99 88 11

Perceived freq. 11 Hz

44

44

0

Repeat this 22 times Total = 88 22 1936

83 44 39

Perceived freq. 44 39 5 Hz

2019 1936 83

44

44
44

0
44

44 88

99 88 11

Perceived freq. 11 Hz

0

Repeat this 22 times Total = 88 22 1936

83 44 39

Perceived freq. 44 39 5 Hz

2019 1936 83

44
44

44

Date: _ _ / _ _ / 2019 
Name ID (last 3 digits)

Prapun 5 5 5

1 3   1 1

Example 6.15. In each part below, for the given value of f0, find the
perceived frequency of e2πf0t when the sampling rate is 88 [Sa/s].

ECS 332: In-Class Exercise # 19 - Sol 

Instructions 
1. Separate into groups of no more than three students each. The group cannot be the 

same as any of your former groups after the midterm. 
2. Write down all the steps that you have done to obtain your answers. You may not get 

full credit even when your answer is correct without showing how you get your answer. 
3. Do not panic.   

 
1. Suppose we input cos 2𝜋 𝑓 𝑡  into plotspect with sampling rate  88sf   samples/sec.  

Find the “perceived” frequency (the freq. that plotspect sees) when 

a) 0f  99 

 
b) 0f  2019 

 
2. Suppose we input 𝑒  into plotspect with sampling rate  88sf   samples/sec.  

Find the “perceived” frequency (the freq. that plotspect sees) when 

a) 0f  99 

 
b) 0f  2019 

 

0
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0

Repeat this 22 times Total = 88 22 1936

83 44 39

Perceived freq. 44 39 5 Hz
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44

44
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Perceived freq. 11 Hz

0

Repeat this 22 times Total = 88 22 1936

83 44 39
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2019 1936 83

44
44

44

Date: _ _ / _ _ / 2019 
Name ID (last 3 digits)

Prapun 5 5 5

1 3   1 1
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6.16. A cosine function at frequency f0 can also be thought of as a combi-
nation of two complex exponential at frequency f0 and −f0. Therefore, we
can also use the tunneling technique to analyze the cosine function as well
by looking at its individual complex-exponential components.

Example 6.17. Let’s consider a signal that is closer to Example 6.5. Sup-
pose we consider cos (100πt). The sampling rate used is 49 [Sa/s]. Find the
perceived frequency.

Example 6.18. Now, let’s consider the signal sin (100πt) discussed in Ex-
ample 6.5. Again, the sampling rate used is 49 [Sa/s]. Find the perceived
signal.

Example 6.19. Application of the sampling theorem: In telephony, the
usable voice frequency band ranges from approximately 300 Hz to 3400 Hz.
The bandwidth allocated for a single voice-frequency transmission channel
is usually 4 kHz, including guard bands, allowing a sampling rate of 8 kHz
to be used as the basis of the pulse code modulation system used for the
digital PSTN.

Definition 6.20.

(a) Given a sampling frequency, fs, the Nyquist frequency is fs/2.

(b) Given the highest (positive-)frequency component fmax of an analog
signal,

(i) the Nyquist sampling rate is 2fmax and

(ii) the Nyquist sampling interval is 1/(2fmax).
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6.21. For the remaining analysis in this chapter, we will use g(t) to denote
the signal under consideration. You may replace g(t) below by m(t) if you
want to think of it as an analog message to be transmitted by a communi-
cation system. We use g(t) here because the results provided here work in
broader setting as well.

6.2 Ideal Sampling

Definition 6.22. In ideal sampling, the (ideal instantaneous) sampled
signal is represented by a train of impulses whose area equal the instanta-
neous sampled values of the signal

gδ (t) =
∞∑

n=−∞
g [n]δ (t− nTs) .

ECS332 Chapter 655

Ts 2Ts 3Ts 4Ts-Ts-2Ts-3Ts-4Ts
t
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g[-2]g[-4]
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𝑔 𝑡

Sampling

t
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Time Domain

6.23. The Fourier transform Gδ(f) of gδ (t) can be found by first rewriting
gδ (t) as

gδ (t) =
∞∑

n=−∞
g (nTs)δ (t− nTs) =

∞∑
n=−∞

g (t)δ (t− nTs)

= g (t)
∞∑

n=−∞
δ (t− nTs).
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Multiplication in the time domain corresponds to convolution in the fre-
quency domain. Therefore,

Gδ (f) = F {gδ (t)} = G (f) ∗ F

{ ∞∑
n=−∞

δ (t− nTs)

}
.

For the last term, the Fourier transform can be found by applying what we
found in Example 4.4625:

∞∑
n=−∞

δ (t− nTs)
F−−⇀↽−−
F−1

fs

∞∑
k=−∞

δ (f − kfs).

This gives

Gδ (f) = G (f) ∗ fs
∞∑

k=−∞

δ (f − kfs) = fs

∞∑
k=−∞

G (f) ∗ δ (f − kfs).

Hence, we conclude that

gδ (t) =
∞∑

n=−∞
g [n]δ (t− nTs)

F−−⇀↽−−
F−1

Gδ (f) = fs

∞∑
k=−∞

G (f − kfs). (83)

In words, Gδ (f) is simply a sum of the scaled and shifted replicas of G(f).

Example 6.24. Consider a continuous-time signal g(t) whose Fourier trans-
form is plotted below.

55

𝑓-2 2

2

(a) Find the Nyquist sampling rate for this signal.

25We also considered an easy-to-remember pair and discuss how to extend it to the general case in 4.47.
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(b) Plot the Fourier transform of g(t) from f = −6 to f = 6

(i) when the sampling interval is Ts = 1
5
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(ii) when the sampling interval is Ts = 1
3
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6.25. As usual, we will assume that the signal g(t) is band-limited to B
Hz ((G(f) = 0 for |f | > B)).

(a) When B < fs/2 as shown in Figure 50, the replicas do not overlap and
hence we do not need to spend extra effort to find their sum.Ideal Sampling: MATLAB Exploration
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Figure 50: The Fourier
transform Gδ(f) of gδ (t)
when B < fs/2

(b) When B > fs/2 as shown in Figure 51, overlapping happens in the
frequency domain. This spectral overlapping of the signal is (also)
commonly referred to as “aliasing” mentioned in 6.7. To find Gδ(f),
dont forget to add the replicas
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Figure 51: The Fourier
transform Gδ(f) of gδ (t)
when B > fs/2
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6.26. Remarks:

(a) Gδ (f) is “periodic” (in the frequency domain) with “period” fs.

• So, it is sufficient to look at Gδ (f) between ±fs
2

(b) The MATLAB script plotspect that we have been using to visualize
magnitude spectrum also relies on sampled signal. Its frequency domain
plot is between ±fs

2 .

(c) Although this sampling technique is “ideal” because it involves the use
of the δ-function. We can extract many useful conclusions.

(d) One can also study the discrete-time Fourier transform (DTFT) to look
at the frequency representation of the sampled signal.

6.3 Reconstruction

Definition 6.27. Reconstruction (interpolation) is the process of re-
constructing a continuous time signal g(t) from its samples.

6.28. From (83), we see that when the sampling frequency fs is large
enough, the replicas of G(f) will not overlap in the frequency domain. In
such case, the original G(f) is still intact and we can use a low-pass filter
with gain Ts to recover g(t) back from gδ (t).

6.29. To prevent aliasing (the corruption of the original signal because its
replicas overlaps in the frequency domain), we need

Theorem 6.30. A baseband signal g whose spectrum is band-limited to
B Hz (G(f) = 0 for |f | > B) can be reconstructed (interpolated) exactly
(without any error) from its sample taken uniformly at a rate (sampling
frequency/rate) fs > 2B Hz (samples per second).[6, p 302]
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6.31. Ideal Reconstruction: Continue from 6.28. Assuming that fs >
2B, the low-pass filter that we should use to extract g(t) from Gδ(t) should
be

HLP (f) =


|f | ≤ B,
B < |f | < fs −B,
|f | ≥ fs −B,

In particular, for “brick-wall” LPF, the cutoff frequency fcutoff should be
between B and fs −B.

6.32. Reconstruction Equation: Suppose we use fs
2 as the cutoff fre-

quency for our “brick-wall” LPF in 6.31,

1

1






The impulse response of the LPF is hLP (t) = sinc
(

2π
(
fs
2

)
t
)

= sinc(πfst).

The output of the LPF is

ĝ(t) = gδ (t) ∗ hLP (t) =

( ∞∑
n=−∞

g [n]δ (t− nTs)

)
∗ hLP (t)

=
∞∑

n=−∞
g [n]hLP (t− nTs) =

∞∑
n=−∞

g [n] sinc (πfs (t− nTs)) .

When fs > 2B, this output will be exactly the same as g(t):

g (t) =
∞∑

n=−∞
g [n] sinc (πfs (t− nTs)) (84)
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• This formula allows perfect reconstruction the original continuous-time
function from the samples.

• At each sampling instant t = nTs, all sinc functions are zero except
one, and that one yields g(nTs).

• Note that at time t between the sampling instants, g(t) is interpolated
by summing the contributions from all the sinc functions.

• The LPF is often called an interpolation filter, and its impulse response
is called the interpolation function.

Example 6.33. In Figure 52, a signal gr(t) is reconstructed from the sam-
pled values g[n] via the reconstruction equation (84).

1

Figure 52: Application of the reconstruction equation
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Example 6.34. We now return to the sampling of the cosine function (si-
nusoid).
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Figure 53: Reconstruction of the
signal g(t) = cos(2π(2)t) by its
samples g[n]. The upper plot uses
Ts = 0.4. The lower plot uses
Ts = 0.2.

Theorem 6.35. Sampling theorem for uniform periodic sampling: If
a signal g(t) contains no frequency components for |f | ≥ B, it is completely
described by instantaneous sample values uniformly spaced in time with
sampling period Ts ≤ 1

2B . In which case, g(t) can be exactly reconstructed
from its samples (. . . , g[−2], g[−1], g[0], g[1], g[2], . . .) by the reconstruction
equation (84).

6.36. Remarks:

• Need a lot of g[n] for the reconstruction.

• Practical signals are time-limited.

◦ Filter the message as much as possible before sampling.

6.37. The possibility of fs = 2B:

• If the spectrum G(f) has no impulse (or its derivatives) at the highest
frequency B, then the overlap is still zero as long as the sampling rate
is greater than or equal to the Nyquist rate, that is, fs ≥ 2B.

• If G(f) contains an impulse at the highest frequency ±B, then fs = 2B
would cause overlap. In such case, the sampling rate fs must be greater
than 2B Hz.
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Example 6.38. Consider a sinusoid g(t) = sin (2π(B)t). This signal is
bandlimited to B Hz, but all its samples are zero when uniformly taken at
a rate fs = 2B, and g(t) cannot be recovered from its (Nyquist) samples.
Thus, for sinusoids, the condition of fs > 2B must be satisfied.

Let’s check with our formula (83) for Gδ(f). First, recall that

sinx =
ejx − e−jx

2j
=

1

2j
ejx − 1

2j
e−jx.

Therefore,

g (t) = sin (2π (B) t) =
1

2j
ej2π(B)t − 1

2j
e−j2π(B)t = −1

2
jej2π(B)t +

1

2
jej2π(−B)t

and

Note that G(f) is pure imaginary. So, it is more suitable to look at the
plot of its imaginary part. (We do not look at its magnitude plot because
the information about the sign is lost. We also do not consider the real part
because we know that it is 0.)
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6.39. The big picture:

• g(t) is a continuous-time signal.

• gδ(t) is also a continuous-time signal.

◦ However, gδ(t) is 0 almost all the time except at nTs where we have
weighted δ−function.

◦ We define gδ(t) so that we can have an easy way to analyze g[n]
below.
(Another approach is to use DTFT.)

◦ It provides an intermediate step that leads to the sampling theo-
rem, the Nyquist sampling rate requirement, and the reconstruc-
tion equation.
It also provides a way to “visualize” aliasing.

• g[n] is a discrete-time signal.

◦ This is simply a sequence of numbers.

◦ The reconstruction equation says that we can recover g(t) back
from g[n] under appropriate condition.

◦ So, there is no need to transmit the whole signal g(t). We only
need to transmit g[n].
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6.4 Triangular (Linear) Interpolation

Here, we use triangular waveform instead of the sinc function for interpola-
tion.

1

Ts 2Ts 3Ts 4Ts-Ts-2Ts-3Ts-4Ts

t

t
Ts-Ts

1

Figure 54: Triangular (Linear) Interpolation

6.40. When linear interpolation is used, high frequency content of G(f) is
attenuated and (small part of) the replicas at even higher frequencies (which
do not exist before) are also introduced.
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Figure 55: Triangular (Linear) Interpolation: Effects on Ĝ(t)
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